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Abstract

The homoclinic orbit associated with the transition from steady convection to Chaos in the weak turbulent regime

is di�cult to recover in simple computational procedures because of its unstable nature. A simple procedure which
recovers the homoclinic orbit up to the desired accuracy is presented. This procedure combines the insight obtained
from previous work on a local non-linear analysis of the problem and the Adomian's decomposition method of
solution which provides a global semi-analytical solution. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Transitions from steady convection to Chaos in a

¯uid layer heated from below are typically associated

with a homoclinic explosion when the trajectory which

originally wanders around one ®xed point moves away

towards the other ®xed point. The trajectory's be-

haviour depends on the Rayleigh number and on the

initial conditions. While the existence of a homoclinic

orbit in the convective ¯ow was already established,

the di�culty to recover computationally this orbit is

documented as well [1]. A simple procedure allowing

the computational recovery of the homoclinic orbit is

presented in this paper by using Adomian's decompo-

sition method [2,3], which provides in principle an ana-

lytical solution, in conjunction with previous analytical

results which provide e�ective guidelines. The detailed

analysis of the problem under consideration was

presented by Vadasz [4], and for the corresponding

problem of gravity driven or centrifugally induced con-

vection in a porous layer, by Vadasz and Olek [5] and

Vadasz and Olek [6], respectively. The objective of the

present paper is to present results regarding the salient
aspects of the computational recovery of the homo-
clinic orbit, which have not been presented or

discussed elsewhere.

2. Problem formulation and method of solution

The problem consists of an in®nite ¯uid layer subject
to gravity and heated from below which is subject to
stress free boundary conditions on the horizontal

boundaries. For convective rolls having axes parallel
to the shorter dimension (i.e. y ) v=0, and the govern-
ing equations can be presented in terms of a stream

function de®ned by u= ÿ @c/@z and w=@c/@x, which
yields the following system of partial di�erential
equations presented in a dimensionless form�
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where the two-dimensional Laplacian operator is
de®ned in the form H2 0 @2/@x 2 + @2/@z 2 and the

boundary conditions for the stream function are
c=@c/@z=0 on the horizontal boundaries. Here u, v
and w are the three components of the velocity vector,

T is temperature, x and y are the horizontal space
coordinates, z is the vertical space coordinate and tÃ is
time. The dimensionless groups appearing in Eqs. (1)

and (2) are the Rayleigh number de®ned as Ra �
b�DT�g�h3�=a�n� and the Prandtl number de®ned as
Pr � n�=a�, where b� is the thermal expansion co-

e�cient, DT� is the constant temperature di�erence
between the hot bottom and cold top boundaries, g� is
the gravity acceleration, h� is the height of the layer,
n� and a� are the kinematic viscosity and the thermal

di�usivity of the ¯uid, respectively.
To obtain the complete solution to the non-linear

coupled system of partial di�erential Eqs. (1) and (2)

we represent the stream function and temperature in
the form

c � 3
������������������
l�Rÿ 1�
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where R=Ra/Rac is the scaled Rayleigh number,
which upon using the wavenumber corresponding to

the convection threshold, i.e. kcr � p=
���
2
p

, yields for the
critical Rayleigh number Rac=27p 4/4, and l=8/3.
This representation is equivalent to a Galerkin expan-

sion of the solution in both x and z directions, trun-
cated when i+j=2, where i is the Galerkin summation
index in the x direction and j is the Galerkin sum-

mation index in the z direction. Substituting (3) and
(4) into the Eqs. (1) and (2), multiplying the equations
by the orthogonal eigenfunctions corresponding to (3)

and (4) and integrating them over the height of the
domain and over the wavelength of the convection cell
in the vertical and horizontal directions, respectively,
i.e.�p=k
0

dx

�1
0

dz���,

yields a set of three ordinary di�erential equations for
the time evolution of the amplitudes in the form

_X � Pr�Yÿ X � �5�

_Y � RXÿ Yÿ �Rÿ 1�XZ �6�

_Z � l�XYÿ Z � �7�

where the time was rescaled in the form t=3p 2tÃ/2 and
the dots (�) denote time derivatives d( )/dt. Eqs. (5)±(7)
are the famous Lorenz equations [7,1], which are satis-

®ed by the motionless solution X=Y=Z=0 that is
stable when R< 1, by the steady convective solutions
X=Y=21 and Z=1 which are stable when 1<R<

Rc2, and by Chaotic or periodic solutions for values of
R>Rc2. The transition from the steady to the Chaotic
solution occurs via a subcritical Hopf bifurcation [1,4]

and is associated with a homoclinic explosion when
the trajectory which originally wanders around one
steady convective solution (®xed point) moves away
towards the other ®xed point.

Adomian's decomposition method [2,3,8] was
adopted in solving the system (5)±(7) to obtain an ana-
lytical solution in terms of in®nite power series. The

practical need to evaluate the solution and obtain nu-
merical values from the in®nite power series, the conse-
quent series truncation, and the practical procedure to

accomplish this task, transform the analytical results
into a computational solution evaluated up to a ®nite
accuracy. Details regarding the method of solution as

applicable to solving the system (5)±(7) are presented
by Vadasz [4] and, Vadasz and Olek [5,6].

3. Results and discussion

The results of X(t ), Y(t ) and Z(t ) are presented in
terms of projections of the trajectory's data points
onto the planes Y=0, Z=0 and X=0. As long as the

initial conditions are not too far away from one of the
®xed points X=Y=Z=1 or X=Y= ÿ 1, Z=1 it is
relatively easy to recover the orbit associated with the
Hopf bifurcation relevant to the transition from steady

convection to Chaos. However as the initial conditions
depart signi®cantly from the ®xed points the orbit
becomes more and more unstable and its recovery

becomes more di�cult. The region around the origin
poses particular di�culties because (i) it is far away
from both ®xed points, and (ii) the Z axis being part

of the stable manifold of the origin prevents the choice
of initial conditions on this axis, as the solution then
will naturally converge towards the origin
(X=Y=Z=0) and prevent the recovery of the homo-

clinic orbit. The method adopted here is the use of
quantitative approximations based on Vadasz [4] and
successive computations for initial conditions around

the origin but not necessarily too close to it. This pro-
cedure allowed to establish that the homoclinic orbit in
the neighbourhood of the origin lies on the plane Y1
1.83333 X. Accordingly we chose the initial conditions
as close as possible to the origin on this plane. The
results presented here correspond to the initial con-
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ditions X0=10ÿ6, Y0=1.83333� 10ÿ6 and Z0=0. Then
for R=13.926557407520 we obtain the one-sided
(single branch) homoclinic orbit as presented in Fig. 1,

observed when the trajectory makes one single loop
around the ®xed point (i.e. for 0 R t R 5). The accu-
racy (number of signi®cant digits) required for the

value of R in order to recover the periodic orbit far

away from both ®xed points was analysed and dis-
cussed by Vadasz [4]. There is not much novelty in
recovering the one-sided homoclinic orbit; this has

been done previously and reported by Sparrow [1].
The interesting part is the ability to use this pro-

cedure to recover the complete two-sided (both

branches) homoclinic orbit. This is accomplished by a

Fig. 1. The one-sided homoclinic orbit (trajectory's data points are not connected); (a) projection of trajectory's data points on the

plane Y=0, (b) projection of trajectory's data points on the plane Z=0, (c) projection of trajectory's data points on the plane

X=0.
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very slight variation of R. For R=13.926557407521 we
obtain the complete homoclinic orbit as presented in
Fig. 2 following the trajectory to make a complete
loop around both ®xed points. The direction of the

trajectory is marked by arrows on Fig. 2(a), represent-

ing the projection of the trajectory's data points onto
the plane Y=0. It is evident from the ®gure that the
trajectory starting from the initial conditions at Z0=0
and X0=10ÿ6 (and Y0=1.83333 � 10ÿ6 not observed

on this projection) moves counter-clockwise on the

Fig. 2. The two-sided homoclinic orbit (trajectory's data points are not connected); (a) projection of trajectory's data points on the

plane Y=0, (b) projection of trajectory's data points on the plane Z=0, (c) projection of trajectory's data points on the plane

X=0.
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right branch of the homoclinic orbit and returns
straight to the origin from above. At the origin the tra-

jectory makes a sudden right turn switching to the left
branch of the orbit where it moves clockwise making a
complete loop by returning to the origin from above

(actually very close to it but not exactly to the origin).
Fig. 2(b), (c) represent the projection of the same tra-
jectory on the planes Z=0 and X=0, respectively. The

closer we choose the value of X0 to the origin, the
closer the trajectory will recover the accurate homo-
clinic orbit (recall that the value of Y0 is selected to lie

on the plane Y 1 1.83333 X ). Naturally, we cannot
choose the origin itself as the initial conditions,
because it lies on the Z axis which being a part of the
stable manifold of the origin, will cause the solution to

remain at the origin, recovering the trivial solution.

4. Conclusions

A simple procedure for computational recovery of

the homoclinic orbit for the problem of thermal con-
vection in a ¯uid layer heated from below was pre-
sented. The procedure combining previous results

obtained via the weak non-linear analysis and
Adomian's decomposition method of solution yield the

complete two-sided homoclinic orbit up to the desired
accuracy.
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